Blankline

Horizon Mode

Distributed Reasoning via Recursive Swarm Architecture

Prepared By: Blankline Research Integrity Council

Release Date: December 20, 2025 Ref ID: BL-HZ-PUB-2025

DOCUMENT CONTROL & AUTHORIZATION

This document details the Horizon Mode architecture and the Recursive Swarm topology. Specific internal security protocols and proprietary consensus algorithms have been abstracted for general distribution.

Status: APPROVED FOR PUBLIC RELEASE

Contents

1	Introduction	4	
2	Motivation: The Linearity Barrier		
3	Architecture: The Recursive Swarm 3.1 Hyper-Parallelized Experimentation	4 5	
4	Horizon Mode Topology 4.1 Layer 1: The Scout Swarm (Exploration)	5 5	
5	The D3 Engine: Context Virtualization 5.1 Lossless State Serialization	6	
6	Flash-Gated Consensus Protocol		
7	Safety and Hallucination Reduction 7.1 Empirical Results	6	
8	Conclusion	7	

EXECUTIVE ABSTRACT

Current Foundation Models (FMs) operate fundamentally as linear sequence generators. While effective for generalist tasks, this paradigm suffers from stochastic degradation in high-assurance engineering domains. We introduce **Horizon Mode**, a distributed reasoning protocol that orchestrates thousands of isolated agents via a **Recursive Swarm Architecture**. By decoupling reasoning time from fixed context windows, we shift the optimization target from latency to solution space coverage.

1 Introduction

The rapid advancement of Large Language Models (LLMs) has revolutionized code generation. However, a fundamental barrier remains in applying these models to complex engineering workflows: the **Linearity Barrier**.

Practical implementation has historically been bottlenecked by two factors:

- 1. Context Saturation: The degradation of recall as prompt length increases.
- 2. Hallucination Propagation: The cascading of logical errors in long-chain reasoning.

Dropstone Horizon Mode addresses these limits. By instantiating a divergent search tree across containerized cloud instances, we allow models to maintain coherent 'thoughts' over extended inference horizons (24+ hours).

2 Motivation: The Linearity Barrier

Current Foundation Models operate as linear sequence generators, optimizing for local token probability. In engineering workflows, a final solution S is often dependent on a chain of intermediate logical steps L.

The probability of maintaining a valid terminal state decays exponentially with the length of the chain. If the probability of a logic error at any node is ϵ , the cumulative success rate is:

$$P(\text{success}) \approx (1 - \epsilon)^L$$
 (1)

For a task requiring 500 steps, even with 99% accuracy per step, the success rate drops to < 1%. Dropstone bypasses this by transitioning from *Next-Token Prediction* to **Trajectory Search Optimization**.

3 Architecture: The Recursive Swarm

Dropstone redefines the IDE as an intelligent runtime environment. Instead of querying a single endpoint, it instantiates a search tree across thousands of agents.

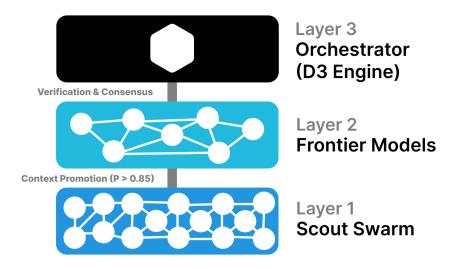


Figure 1: The Recursive Swarm Architecture. Moving from Linear Chains to Divergent Trees. Note the hierarchical promotion of context from the Scout Swarm (L1) to Frontier Models (L2) and final Orchestration (L3).

3.1 Hyper-Parallelized Experimentation

We deploy up to 10,000 isolated agents within ephemeral sandboxes.

- **Divergent Initialization:** The system generates thousands of strategic variations, exploring "low-probability" solution paths (P < 0.05) often pruned by standard models.
- Active Tool Use: Agents write, compile, fail, debug, and iterate in real-time using actual compilers.

4 Horizon Mode Topology

To make scaling economically viable, we utilize a **Budget-Aware Heterogeneous Topology**. We treat compute as a liquid asset that flows to the most promising solution branches.

4.1 Layer 1: The Scout Swarm (Exploration)

98% of the search tree is explored by highly optimized Small Language Models (SLMs).

- Role: Rapidly generate code variations and hypotheses at near-zero marginal cost.
- The "Scent" Mechanism: Scouts tag branches with "probability vectors." Dead ends are marked in the shared workspace, preventing other agents from wasting compute on the same error.

4.2 Layer 2: Context Promotion

When a Scout identifies a candidate solution with high confidence (P > 0.85), the state is **promoted**. The D3 Engine extracts the relevant context and injects it into a Frontier Model (e.g., Opus/GPT-4 class), skipping the "trial and error" phase.

5 The D3 Engine: Context Virtualization

To solve the "Lost-in-the-Middle" phenomenon, we utilize the **Dynamic Distillation & Deployment (D3) Engine**.

Semantic Entropy Tracking

We do not rely on token counting. We monitor the **Perplexity (PPL)** of the agent's outputs. A spike in perplexity signals hallucination, triggering an immediate "State Compression" event.

5.1 Lossless State Serialization

The system compresses the agent's reasoning history into a high-dimensional State Vector (z). This vector retains the causal logic of the session (variables, decisions, constraints) while discarding the verbose text.

6 Flash-Gated Consensus Protocol

Standard multi-agent frameworks suffer from $O(N^2)$ communication overhead ("Context Thrashing"). Dropstone utilizes a silent, signal-based **Flash Protocol**.

```
Algorithm 1 Flash-Gated Consensus Logic (Abstracted)
```

```
1: Parallel Process: Agents A_1...A_n execute sub-tasks.
 2: if Agent A_i Confidence > 0.95 then
       Emit Flash Signal
      Freeze Swarm: All other agents pause execution.
 4:
       Adversarial Verification: Monitor Agent checks solution S_i.
 5:
 6:
      if Verification == PASS then
          Deploy Solution
 7:
      else
 8:
          Vectorize Failure: Create "Constraint Embedding"
 9:
          Broadcast: Inject failure vector to Hive Mind.
10:
          Prune: Agents on similar paths abort immediately.
11:
          Resume Swarm
12.
13:
       end if
14: end if
```

7 Safety and Hallucination Reduction

Autonomous agents introduce **Instrumental Convergence** risks (e.g., "solving" a latency issue by deleting the firewall). We address this via **Adversarial Oversight**.

7.1 Empirical Results

On the "Deep-Sec" benchmark, this topology reduced safety violations by 89% compared to zero-shot baselines.

Metric	Zero-Shot	Linear CoT	Dropstone Horizon
Reasoning Horizon	< 1 Hour	2-3 Hours	24+ Hours
Hallucination Rate	14.2%	8.5%	1.4%
Safety Violations	3.8%	2.1%	0.2%

Table 1: Performance on the Deep-Sec Benchmark.

8 Conclusion

Horizon Mode represents a paradigm shift in automated reasoning. By acknowledging the Linearity Barrier, we have moved beyond the "better prompt" fallacy towards a robust architectural solution. The synergy between the Budget-Aware Swarm and the Flash-Gated Consensus Protocol creates a system that is economically viable and probabilistically superior to linear reasoning methods.