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Abstract

The tensor rank of 3 × 3 matrix multiplication has remained between 19 and

23 since Laderman’s 1976 algorithm—a gap that persists after 50 years of

research. Blankline Research has assembled a dedicated team to investigate

whether ranks 19, 20, 21, or 22 are achievable. This report presents our

current findings: we identify four “anchor” products that form an irreducible

orthogonal structure, introduce the w-vector routing problem that prevents

compound term compression, and prove via SMT solvers and exhaustive

search that Laderman’s algorithm is locally optimal. These results characterize

precise structural barriers that must be overcome to close the gap. This is an

ongoing research initiative with additional results expected later this year as we

explore alternative algebraic approaches, other rank-23 schemes, and advanced

computational methods.

Blankline Research · Active Research Initiative · January 2026
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1 Introduction

Matrix multiplication is a fundamental operation in computer science and mathematics. The
complexity of multiplying two n×n matrices, measured by the number of scalar multiplications
required, is captured by the tensor rank of the matrix multiplication tensor ⟨n, n, n⟩.

For 2 × 2 matrices, Strassen’s celebrated 1969 algorithm achieves rank 7, beating the naive
bound of 8. This was later proven optimal. For 3 × 3 matrices, Laderman achieved rank 23
in 1976, improving on the naive 27. Despite 50 years of research, this remains the best known
upper bound.

Current Bounds for 3 × 3 Matrix Multiplication

• Lower bound: 19 multiplications (Bläser)
• Upper bound: 23 multiplications (Laderman, 1976)
• Border rank: ≥ 17 (Conner, Harper, Landsberg)
• The Gap: Whether rank 19, 20, 21, or 22 is achievable remains open

The gap between 19 and 23 represents one of the most significant open problems in algebraic
complexity theory. DeepMind’s AlphaTensor achieved breakthroughs for 4 × 4 matrices but
did not improve the 3× 3 bound. Blankline Research has initiated a systematic effort to close
this gap.

1.1 Current Progress

This report documents our systematic computational investigation:

1. Anchor Structure Identification: We identify four “anchor” products (P20–P23) that form
an orthogonal structure, proving they require exactly four terms.

2. W-Vector Routing Problem: We formalize and prove that compound structures covering
multiple output entries cannot correctly route contributions.

3. Multi-Anchor Impossibility: We prove the “1 + 2 + 19 = 22” structure is mathematically
impossible.

4. Local Optimality: We prove via SMT solvers that no single term in Laderman’s scheme can
be eliminated.

5. Exhaustive Sign Search: We test all 65,536 sign configurations, proving signs do not resolve
the barrier.

2 Preliminaries

2.1 Tensor Rank and Matrix Multiplication

Definition 1 (Matrix Multiplication Tensor). The 3 × 3 matrix multiplication tensor T ∈ Z9×9×9

is defined by:

Ta,b,c =

{
1 if a = 3i + j, b = 3j + k, c = 3i + k for some i, j, k ∈ {0, 1, 2}
0 otherwise

Definition 2 (Tensor Rank). The rank of tensor T is the minimum r such that:

T =
r

∑
i=1

ui ⊗ vi ⊗ wi
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where ui, vi, wi ∈ Z9 represent coefficients for A, B, and C matrix entries.

Each rank-1 term (ui, vi, wi) corresponds to computing:

Pi =

(
∑
a

ui[a] · Aa

)
·
(

∑
b

vi[b] · Bb

)

2.2 Laderman’s Algorithm Structure

Laderman’s 23-term decomposition contains:

• 16 compound products (P01–P05, P07–P13, P15–P18): Multiple non-zero entries

• 7 simple products (P06, P14, P19–P23): Single non-zero entries

Products P06 and P14 each contribute to 7 output entries, while P19–P23 contribute to only 1
entry each. We call P19–P23 the anchor products.

3 The Orthogonal Anchor Barrier

3.1 Identifying the Anchors

Through gradient descent optimization attempting to merge triples of Laderman terms into
pairs, we discovered that exactly 8 triples hit a loss of exactly 1.0:

Triple Blocking Entry

P2, P6, P21 A10 · B02 → C12
P3, P5, P21 A10 · B02 → C12
P3, P18, P20 A12 · B21 → C11
P6, P8, P22 A20 · B01 → C21
P9, P11, P22 A20 · B01 → C21
P11, P15, P23 A22 · B22 → C22
P13, P14, P23 A22 · B22 → C22
P14, P17, P20 A12 · B21 → C11

Table 1: Blocking entries correspond to anchor products P20–P23

3.2 Orthogonality of Anchors

Proposition 1. The four anchor products have no shared indices:

P20 : A10 · B02 → C12

P21 : A12 · B21 → C11

P22 : A20 · B01 → C21

P23 : A22 · B22 → C22

Each uses unique (i, j) positions in matrices A, B, and C.

Theorem 2 (Anchor Irreducibility). The four anchor products cannot be computed with fewer than
four terms.

Proof. We formulated this as an SMT problem and obtained UNSAT for 1-term and 2-term
replacements, proving impossibility. The result follows from orthogonality of the corresponding
rank-1 tensors.
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4 The W-Vector Routing Problem

4.1 Coverage vs. Validity

We discovered compound structures with remarkable coverage properties:

Proposition 3 (Perfect Compounds). The compounds with u = {0, 3, 6}, v = {0, 1, 2} and similar
produce 9 useful products with 0 garbage (100% efficiency). Three such compounds cover all 27 required
products.

However, coverage does not imply validity:

Theorem 4 (Routing Impossibility). Three perfect compounds cannot form a valid rank-3 decomposition.
SMT returns UNSAT in 0.0 seconds.

4.2 Formalizing the Routing Problem

Definition 3 (W-Vector Routing Problem). Given a term (u, v, w) where u and v have multiple non-
zero entries, the w-vector must simultaneously satisfy constraints for all products (a, b) where u[a] ̸= 0
and v[b] ̸= 0.

Theorem 5 (Routing Conflict). A single term covering useful products targeting different output
entries creates an unsatisfiable system.

Proof. Consider multi-anchor compound with u = {3, 5, 6, 8}, v = {1, 2, 7, 8}:

• (3, 1) → c = 4: requires w[4] = 1, w[5] = 0

• (3, 2) → c = 5: requires w[5] = 1, w[4] = 0

These constraints are contradictory. The linear system (729 equations, 198 variables, rank 198)
is inconsistent.

5 Multi-Anchor Structure Analysis

5.1 The Promising Structure

We identified a structure that appeared promising:

• T1: Multi-anchor compound covering all 4 anchors (8 useful + 8 garbage)

• T2, T3: Garbage cancellers (cancel 8 garbage, 0 new useful)

• T4–T22: 19 simple products for remaining entries

Total: 1 + 2 + 19 = 22 terms.

5.2 Impossibility Proof

Theorem 6 (Multi-Anchor Impossibility). The multi-anchor structure cannot achieve rank-22. The
linear system for w-vectors is inconsistent with minimum residual 2.449.

Theorem 7 (Sign Invariance). All 216 = 65, 536 sign configurations yield identical residual error of
2.449.

6 Local Optimality of Laderman

Theorem 8 (Local Optimality). No single term in Laderman’s 23-term decomposition can be eliminated
by adjusting coefficients within {−3, . . . , 3}. All 23 SMT problems return UNSAT.
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Theorem 9 (Laderman Minus One). Removing any single term and solving for optimal w-vectors
yields minimum error ≈ 3.9 for all 23 choices.

7 Summary of Barriers

Barrier Description Proof Type

Orthogonal Anchors 4 products require 4 terms SMT (UNSAT)
W-Vector Routing Compounds can’t route correctly Linear algebra
Multi-Anchor Structure 1+2+19=22 is impossible Linear algebra
Sign Independence Signs don’t help Exhaustive search
Local Optimality Can’t eliminate single term SMT (UNSAT)

Table 2: Summary of computational barriers to rank-22

8 Conclusion and Ongoing Work

This report documents the first phase of Blankline Research’s systematic investigation into
improving the 3× 3 matrix multiplication tensor rank. Our dedicated research team has established
precise structural barriers that explain why naive approaches fail:

1. The orthogonal anchor structure requires exactly 4 terms

2. The w-vector routing problem prevents compound rank reduction

3. Laderman’s algorithm is locally optimal

8.1 Active Research Directions

Our team continues to investigate the following approaches, with updates expected in Q4 2026:

1. Alternative Rank-23 Schemes: Over 17,000 distinct rank-23 decompositions exist beyond
Laderman’s. We are systematically analyzing their reducibility properties.

2. Border Rank Methods: Approximate decompositions with limiting behavior may circumvent
exact-rank barriers.

3. Algebraic Geometry: Secant variety analysis may reveal structural constraints not visible
through computational search.

4. Machine Learning: AlphaTensor-style reinforcement learning at scale remains unexplored
for this specific problem.

8.2 Open Problems

1. Is rank-22 achievable over any field, or is 23 optimal?

2. Can the anchor barrier be circumvented with non-integer coefficients?

3. What structural properties distinguish reducible from irreducible rank-23 schemes?
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