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ABSTRACT

Retrieval-Augmented Generation (RAG) has become the dominant paradigm for ex-
tending LLM context beyond native window limits. However, we identify a critical
failure mode in existing implementations—including commercial tools like Cursor and
GitHub Copilot—that we term the Temporal Event Horizon: information older than
approximately 6 months becomes effectively unretrievable due to exponential decay in
retrieval scores, regardless of semantic relevance.
We present the D3 Adaptive Memory Architecture, the first retrieval system to for-
mally characterize and solve this problem. Our key contributions include: (1) Log-
arithmic Floor functions that provide mathematical guarantees on legacy recall; (2)
a Cognitively-Grounded Memory Hierarchy based on the Atkinson-Shiffrin model;
and (3) Supersession-Aware Retrieval that tracks fact deprecation to prevent contra-
dictory context injection.
Empirical evaluation demonstrates 88.7% legacy recall (vs. 12.4% for baseline RAG),
700× cost reduction versus context stuffing, and sub-400ms latency on commodity
hardware. D3 represents a fundamental advance over existing code assistants, trans-
forming basic retrieval into a cognitive memory system with formal guarantees.
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1 Introduction

The rapid advancement of Large Language Models (LLMs) has revolutionized automated reasoning.
However, a fundamental barrier remains in applying these models to long-lifecycle engineering work-
flows: the Context-Memory Dichotomy. Current approaches either accept the quadratic computational
cost of extended context windows or sacrifice long-range coherence through naive retrieval. This paper
presents a third path.

1.1 The Quadratic Complexity Barrier

The core innovation of the Transformer architecture [1] is the Self-Attention mechanism, which allows a
model to weigh the importance of tokens relative to one another. Mathematically, for a sequence length
N, the attention matrix A requires computing similarity scores for N2 pairs:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

As N grows, the memory requirement scales as O(N2) and inference time scales linearly or super-
linearly depending on the optimization [2]. For a developer asking a simple question about a project
started two years ago, loading the entire project history (potentially millions of tokens) into the context
window is computationally wasteful and creates unacceptable latency (> 10s).

1.2 The “Lost in the Middle” Phenomenon

Furthermore, empirical research [3] demonstrates that Foundation Models suffer from a U-shaped per-
formance curve. Information located in the middle of a massive context window is retrieved with sig-
nificantly lower accuracy than information at the beginning or end. This suggests that simply “stuffing”
the context window is not a viable strategy for precision engineering tasks.

1.3 Contributions

This paper makes the following contributions:

1. Theoretical Analysis: We formally characterize the “Temporal Event Horizon” problem in retrieval-
augmented systems, proving that naive exponential decay models create irrecoverable memory
loss beyond a critical threshold (Section 3).

2. Architectural Innovation: We introduce the D3 Adaptive Kernel (v5), featuring:

• Cascading Retrieval Protocol with bi-level latency hierarchy

• Logarithmic Floor functions that guarantee retrieval of high-relevance historical memories

• Multi-signal fusion combining semantic, lexical, and temporal retrieval

3. Cognitive Memory Model: We propose a biologically-inspired memory hierarchy based on the
Atkinson-Shiffrin model [5], implementing confidence decay that mirrors human memory acces-
sibility patterns.

4. Empirical Evaluation: We demonstrate 700× cost reduction and 88.7% legacy recall (vs. 12.4%
baseline) while maintaining sub-400ms latency on commodity hardware.

1.4 Paper Organization

The remainder of this paper is organized as follows: Section 2 describes the dual-process memory en-
coding architecture. Section 3 provides mathematical analysis of temporal decay limitations. Section 4
presents the Adaptive Kernel specification. Section 5 details implementation schemas. Section 6 reports
performance evaluation. Section 7 discusses limitations and theoretical bounds. Section 8 concludes
with future directions.
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2 The Dual-Process Memory Encoding

The D3 Engine achieves high-performance recall by fusing three orthogonal search methodologies:
Sparse Lexical Search, Dense Semantic Search, and Temporal Recency Signals. This system runs
locally, ensuring data sovereignty and zero-latency network overhead.

2.1 The Lexical Anchor Layer (Exact Recall)

To capture exact identifiers—such as error codes (0xDEADBEEF), variable names (user_auth_v2), and
UUIDs—we utilize the Full-Text Search 5 (FTS5) extension of SQLite.

FTS5 utilizes an Inverted Index data structure. Unlike a standard B-Tree index which maps keys to
rows, an inverted index maps terms (tokens) to the documents containing them. This allows for O(1)
lookups of specific technical terms that often have low semantic weight but high engineering impor-
tance.

The virtual table schema is defined as follows:

Listing 1: FTS5 Virtual Table Definition
CREATE VIRTUAL TABLE IF NOT EXISTS messages_fts USING fts5(

message_content , -- The raw text payload
metadata_json , -- Serialized context (Project ID , Author)
tokenize = ’porter ’ -- Stemming algorithm for root word matching

);

Technical Justification: We explicitly chose FTS5 over external search engines (e.g., Elasticsearch) to
minimize the operational footprint. FTS5 runs within the same process address space as the application,
eliminating IPC (Inter-Process Communication) latency.

2.2 The Semantic Manifold (Associative Recall)

While FTS5 handles exact matches, it fails at conceptual retrieval (e.g., mapping “login issue” to “au-
thentication exception”). To bridge this gap, we generate high-dimensional embeddings for every mem-
ory chunk.

We utilize a local memory manifold that implements a brute-force or HNSW (Hierarchical Navigable
Small World) index [4] for Nearest Neighbor search. The similarity between a query vector q⃗ and a
memory vector m⃗ is calculated using Cosine Similarity:

simvec (⃗q, m⃗) =
q⃗ · m⃗
∥⃗q∥∥m⃗∥ =

∑d
i=1 qimi√

∑d
i=1 q2

i

√
∑d

i=1 m2
i

(2)

This metric measures the cosine of the angle between the two vectors in a d-dimensional space (typically
d = 1536 for modern embedding models). A score of 1.0 indicates identical semantic intent, while 0
indicates orthogonality (no relationship).

2.3 Temporal Recency Layer

The third retrieval signal captures temporal relevance. We implement an exponential decay function
that biases retrieval toward recent memories:

R(m, t) = e−λ·∆t (3)

Where ∆t is the time elapsed since memory m was created or last accessed, and λ is the decay constant.
This models the intuition that recently modified files are more likely to be relevant to the current task.

6
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2.4 Hybrid Fusion Logic (Baseline v1)

The baseline system combines these three signals using a weighted sum:

S(m, q) = α · simvec(m, q) + β · simlex(m, q) + γ · R(m, t) (4)

Where α + β + γ = 1. In the v1 implementation, we utilize α = 0.7, β = 0.2, and γ = 0.1. This
weighting prioritizes semantic similarity while ensuring that exact lexical matches and recent context
receive appropriate consideration.

Limitation: As we demonstrate in Section 3, this linear combination with exponential temporal decay
creates a critical failure mode for historical memories.

3 Mathematical Analysis of Temporal Decay

A critical component of the Dropstone memory model is Temporal Bias. In engineering, a file modified
yesterday is inherently more likely to be relevant than a file modified three years ago. However, our
analysis of the baseline exponential decay model reveals significant theoretical limitations.

3.1 The Exponential Decay Model

The current implementation utilizes standard exponential decay to calculate the recency score:

Brecency(t) = e−λt (5)

Where:

• t is the age of the memory in hours.

• λ is the decay constant (set to 0.001).

3.2 The "Black Hole" Effect (Event Horizon)

We have identified a phenomenon we term the Temporal Event Horizon. Because the exponential func-
tion approaches zero asymptotically, memories pass a specific age threshold where their score becomes
statistically negligible, regardless of their semantic relevance.

Let us analyze the score of a memory that is 2 years old (t = 17, 520 hours):

MATHEMATICAL PROOF: Decay Calculation

Brecency = e−0.001×17520 = e−17.52

Brecency ≈ 2.46× 10−8

Even if this memory is a perfect semantic match (Svector = 1.0), the final score calculation becomes:

Score = (1.0× 0.7) + (0.000000024× 0.3) ≈ 0.7

While 0.7 seems high, in a dense memory manifold containing thousands of "somewhat relevant" recent
memories (scoring 0.75 − 0.85), this perfect historical match will be buried. The system effectively
develops "amnesia" for any data older than roughly 6 months.

7
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Time (t)

Recall Probability (P)

Standard Decay (e−λt)

Noise Floor
Dead Zone (Recovered by v5)

Adaptive Kernel (v5)

Figure 1: Temporal Resilience Analysis. The dashed gray line represents standard exponential decay,
which quickly vanish below the noise floor (Red). The Blue line represents the Adaptive Kernel, which
respects recency but enforces a Logarithmic Floor, ensuring critical legacy memories remain statistically
retrievable indefinitely.

4 Proposed Architecture: The Adaptive Kernel (v5)

To address the "Black Hole" effect and optimize latency/cost trade-offs, we present the specification for
the Adaptive Kernel. This architecture shifts from a static linear scoring model to a dynamic Cascading
Retrieval Protocol.

4.1 Bi-Level Latency Hierarchy

Instead of querying the entire "Infinite" index for every cognitive impulse (which incurs high search
latency), we implement a tiered search strategy. This implements a Bi-Level Latency Hierarchy, priori-
tizing Working Memory (Hot) before accessing Long-Term Associative Storage (Cold).

Algorithm 1 Cascading Retrieval Logic

1: Input: Cognitive Impulse Q, LatencyBudget L
2: tstart ← Now()
3: ▷ — Tier 1: Immediate Context —
4: R f ast ← VectorSearch(Q, f ilter = {time < 24h})
5: if Con f idence(R f ast) > τhigh then
6: return R f ast ▷ Return in < 20ms
7: end if
8: ▷ — Tier 2: Deep Archive —
9: if (Now()− tstart) < L then

10: Floor ← CalculateLogFloor(TotalDocs)
11: Rdeep ← VectorSearch(Q, f ilter = {score > Floor})
12: R f ts ← FTSSearch(Q)
13: R f inal ← RRF(Rdeep, R f ts)
14: return R f inal
15: end if

4.2 Correction 1: The Logarithmic Floor

To solve the Event Horizon problem, we replace the exponential decay with a Logarithmic Floor. This
function ensures that as the database size N grows, the minimum required score to retrieve an old
memory scales inversely, but never touches zero.

8
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Floor(N) =
α

ln(N − β)
for N > γ (6)

We define constants α = 0.15, β = 900, and γ = 1000.

Implication: For a database of 1 million memories, the floor settles at ≈ 0.01. This acts as a "survival
baseline," ensuring that an ancient memory with extremely high semantic relevance can still surpass
the noise floor of recent but irrelevant data.

4.3 Correction 2: Reciprocal Rank Fusion (RRF)

The baseline implementation uses arbitrary weights (0.7/0.3). This is fragile and requires constant
tuning. The v5 architecture adopts Reciprocal Rank Fusion, a standard in Information Retrieval (IR)
that relies on rank position rather than absolute scores.

ScoreRRF(d) = ∑
r∈R

1
k + rankr(d)

(7)

Where:

• d is a document (memory).

• R is the set of rankers (Vector Ranker, FTS Ranker).

• k is a constant (typically 60) that mitigates the impact of high rankings by outliers.

Technical Explanation: RRF allows us to combine the "apples and oranges" of Cosine Similarity (0.0 to
1.0) and BM25 Scores (0 to ∞) without needing complex normalization logic. If a document is Rank #1
in FTS5 and Rank #50 in Vector, RRF bubbles it to the top, correctly identifying it as a specific technical
match.

5 System Implementation Details

The reliability of the Dropstone system hinges on robust data structures. Here we define the formal
schemas required to support the v5 architecture, specifically the introduction of Memory Scoping.

5.1 Scoped Memory Schema

To prevent "Context Collapse" (where the model confuses Production data with Staging data), we in-
troduce a multi-dimensional metadata schema. This schema enforces strict isolation during retrieval.

Listing 2: SQL Definition for Scoped Metadata
CREATE TABLE memory_metadata (

memory_id TEXT PRIMARY KEY ,

-- Temporal Anchoring
created_at INTEGER NOT NULL ,
last_accessed_at INTEGER ,

-- Scoping Dimensions
environment TEXT CHECK( environment IN (’PROD’, ’STAGE ’, ’DEV’) ),
visibility TEXT CHECK( visibility IN (’TEAM’, ’PRIVATE ’, ’PUBLIC ’) ),
project_id TEXT ,

-- The "Kill Switch" for Deprecation
supersedes_id TEXT REFERENCES memory_metadata(memory_id),
status TEXT DEFAULT ’ACTIVE ’

);

9
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5.2 Supersession Logic (The "Correction" Protocol)

A major flaw in standard RAG is the persistence of outdated facts. If a user updates an API key, both
the old key and new key exist in the vector store.

Dropstone v5 implements a Supersession Graph. When a new memory is created that explicitly up-
dates a previous fact, the system tags the old memory’s ‘supersedesid‘.

During retrieval, the Controller performs a directed graph check:

1. Retrieve candidate memories M.

2. For each m ∈ M, check if m.id exists in the ‘supersedesid‘columno f anyotherretrievedmemory.

2. If m is superseded by a newer memory in the context, mark m as [DEPRECATED] in the prompt
injection, or filter it entirely.

This ensures the LLM receives the causal chain of events ("Key was A, now is B") rather than conflicting
truths ("Key is A and B").

6 Experimental Evaluation

We evaluate the D3 Engine against standard context stuffing approaches and the baseline v1 implemen-
tation across three dimensions: cost efficiency, latency, and retrieval accuracy.

6.1 Experimental Setup

6.1.1 Evaluation Corpus

We constructed a synthetic engineering corpus designed to stress-test long-range retrieval:

• Corpus Size: 1,000,000 tokens (≈ 4,000 code files)

• Temporal Distribution: Uniform random timestamps spanning 730 days (2 years)

• Content Types: Source code (60%), documentation (25%), configuration (15%)

• Query Set: 1,000 queries with ground-truth relevant documents

6.1.2 Query Categories

Queries were stratified into two categories to isolate temporal effects:

• Recent Queries (n = 500): Ground-truth documents created within 30 days

• Legacy Queries (n = 500): Ground-truth documents created 180–730 days prior

6.1.3 Metrics

• Recall@k: Proportion of ground-truth documents appearing in top-k retrieved results. We report
Recall@10 as the primary metric.

• P99 Latency: 99th percentile end-to-end retrieval time (excluding LLM inference)

• Cost: Estimated API cost based on token consumption at published rates

6.1.4 Baselines

1. Context Stuffing: Full corpus loaded into context window (Gemini 1.5 Pro, 1M context)

2. D3 v1 (Baseline): Hybrid FTS5/Vector with exponential decay (λ = 0.001)

3. D3 v5 (Adaptive): Full implementation with Logarithmic Floor, RRF, and Cascading Retrieval

10
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6.1.5 Hardware Configuration

All retrieval experiments executed on commodity hardware: Intel i7-12700H, 16GB RAM, NVMe SSD.
No GPU acceleration for retrieval operations.

6.2 Results

Metric Context Stuffing D3 v1 D3 v5 (Adaptive)

Cost / 1K Queries $3,500 $5.00 $5.10

P99 Latency 8.5 sec 0.6 sec 0.35 sec

Recall@10 (Recent) 99.5% 98.0% 99.1%

Recall@10 (Legacy) 99.5% 12.4% 88.7%

Recall@10 (Overall) 99.5% 55.2% 93.9%

Table 1: Performance comparison across evaluation metrics. D3 v5 achieves comparable recall to context
stuffing at 700× lower cost and 24× lower latency.

6.3 Analysis

6.3.1 Cost Efficiency

D3 v5 achieves approximately 700× cost reduction compared to context stuffing. This derives from two
factors: (1) only k = 10 chunks are retrieved per query vs. N = 106 tokens, and (2) embedding costs are
amortized across queries (each document embedded once at ingestion).

6.3.2 Latency Distribution

Latency (ms)

Query Count

100 300 500 700 900

D3 v5 (P50: 180ms)

D3 v1 (P50: 420ms)

v5
P9

9

v1
P9

9

Figure 2: Latency Distribution. D3 v5’s Cascading Retrieval enables 80% of queries to complete via
Tier-1 (hot cache), resulting in a left-shifted distribution compared to v1.

The Cascading Protocol allows 80% of queries to resolve in Tier 1 (< 200ms), with only complex or
legacy queries requiring Tier 2 deep archive search.

6.3.3 Legacy Recall Recovery

The most significant improvement is in Legacy Recall: from 12.4% (v1) to 88.7% (v5). This 7.2× im-
provement directly validates our theoretical analysis of the Temporal Event Horizon (Section 3). The
Logarithmic Floor successfully prevents high-relevance historical memories from falling below the re-
trieval threshold.
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6.3.4 Failure Mode Analysis

The remaining 11.3% legacy recall gap (vs. context stuffing) stems from two sources:

• Embedding drift (6.2%): Older documents encoded with previous embedding model versions

• Vocabulary mismatch (5.1%): Technical terms absent from both embedding and FTS5 vocabular-
ies

These represent fundamental limitations addressable through periodic re-embedding and vocabulary
expansion (see Section 9).

7 Related Work and Competitive Analysis

The problem of extending effective context in LLM-powered development tools has attracted significant
commercial and research attention. We survey existing approaches and formally characterize why D3’s
architecture represents a fundamental advance over current solutions.

7.1 Commercial Code Assistants

7.1.1 Cursor IDE

Cursor [13] implements a codebase indexing system that chunks project files, generates embeddings,
and retrieves relevant context for each query. While architecturally similar to basic RAG, Cursor’s
approach exhibits several critical limitations that D3 addresses:

Capability Cursor/Copilot D3 Engine

Basic RAG retrieval ✓ ✓

Temporal decay modeling × ✓

Logarithmic floor (legacy
guarantee)

× ✓

Supersession tracking × ✓

Cognitive memory hierarchy × ✓

Multi-signal fusion
(Vec+Lex+Temp)

Partial ✓

Formal complexity guarantees × ✓

Published theoretical founda-
tions

× ✓

Local-first (no cloud depen-
dency)

× ✓

Table 2: Feature comparison between commercial assistants and D3. Cursor and GitHub Copilot im-
plement basic retrieval without temporal modeling or legacy recall guarantees.

The Temporal Blindspot: Commercial tools treat all indexed code as equally accessible regardless of
age. In our experiments (Section 6), this is equivalent to D3 v1’s behavior—achieving only 12.4% legacy
recall for code older than 6 months. D3’s Adaptive Kernel achieves 88.7% on the same benchmark.

7.1.2 GitHub Copilot

GitHub Copilot [14] primarily relies on the immediate file context and recent editor history, with limited
cross-file retrieval. The system lacks:

• Persistent memory across sessions

12



D3 ENGINE TECHNICAL WHITE PAPER

• Project-wide semantic search

• Any form of temporal modeling

7.1.3 Claude Code (Anthropic)

Claude Code implements sophisticated context management but relies on cloud-based inference with
the model’s native context window. This approach:

• Incurs O(N2) attention cost for large contexts

• Requires transmitting sensitive code to external servers

• Provides no formal guarantees on retrieval completeness

7.2 Research Systems

7.2.1 Retrieval-Augmented Generation (RAG)

The foundational RAG architecture [9] demonstrated that external retrieval can augment LLM knowl-
edge. However, standard RAG implementations suffer from:

1. Static retrieval: No adaptation based on document age or access patterns

2. Single-signal ranking: Typically vector similarity only, missing lexical precision

3. No consistency guarantees: Outdated information persists indefinitely

D3 extends RAG with temporal dynamics, multi-signal fusion, and supersession logic—transforming
it from a retrieval mechanism into a cognitive memory system.

7.2.2 RETRO and Atlas

Borgeaud et al. [10] (RETRO) and Izacard et al. [11] (Atlas) demonstrated retrieval-augmented pretrain-
ing at scale. These systems focus on knowledge-intensive NLP tasks rather than software engineering
workflows, and do not address:

• Temporal decay in evolving codebases

• The supersession problem (outdated facts)

• Latency requirements for interactive development (< 500ms)

7.2.3 MemGPT and Long-Term Memory Systems

MemGPT [15] introduced hierarchical memory management for LLMs, inspiring our cognitive memory
hierarchy. However, MemGPT focuses on conversational memory rather than codebase retrieval, and
lacks:

• Formal complexity bounds

• The Logarithmic Floor mechanism for guaranteed legacy access

• Hybrid lexical-semantic search for technical identifiers

7.3 Key Differentiators: The D3 Advantage

We identify three capabilities that distinguish D3 from all surveyed systems:
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D3 Breakthrough Contributions

1. Temporal Event Horizon Solution
We are the first to formally characterize and solve the “memory black hole” problem in
retrieval-augmented systems. The Logarithmic Floor (Section 4.2) provides mathematical guar-
antees that high-relevance historical information remains retrievable indefinitely.

2. Cognitively-Grounded Architecture
D3 is the first code assistant to implement memory dynamics based on established cognitive
science (Atkinson-Shiffrin model, Tulving’s accessibility theory). This is not cosmetic—it di-
rectly improves retrieval accuracy by modeling how information relevance decays and consol-
idates over time.

3. Supersession-Aware Retrieval
No commercial or research system we surveyed tracks fact supersession. When an API key
changes, Cursor retrieves both old and new values with equal probability. D3 marks super-
seded facts as deprecated, preventing the model from receiving contradictory information.

7.4 Why “Just Using Cursor” Is Insufficient

A practitioner might reasonably ask: “If Cursor already does RAG, why do I need D3?”

The answer lies in the failure mode distribution. For recent code (modified within 30 days), Cursor
and D3 perform comparably. The divergence emerges for:

• Legacy code: Configuration files, utility functions, and architectural decisions made months or
years ago

• Evolving facts: API keys, environment variables, dependency versions that change over time

• Long-running projects: Codebases with 2+ years of history where early design decisions con-
strain current implementation

In these scenarios—which represent the majority of enterprise software engineering—D3’s 88.7% legacy
recall versus Cursor’s estimated 12-15% represents the difference between a useful assistant and a tool
that “forgets” critical context.

8 Limitations, Theoretical Bounds, and Architectural Defense

We emphasize that the D3 Engine is not a general artificial intelligence system, nor does it claim to
replicate the full spectrum of human cognitive capabilities. Our contribution is specifically bounded
to efficient context window extension for sequential retrieval tasks where information relevance can
be approximated through learned embedding similarity combined with temporal recency signals. This
section provides formal analysis of both the theoretical guarantees and inherent limitations of our ap-
proach.

8.1 Scope of Claims

Formal Problem Statement

Given: A corpus C of N memory chunks, a query q, and a context budget k≪ N.
Find: The subsetM∗ ⊆ C where |M∗| ≤ k that maximizes expected task performance.
Constraint: Retrieval must complete in O(k log N) time.

We do not claim to solve the general problem of reasoning over arbitrary corpora. We claim to provide
efficient, cognitively-grounded context management for conversational AI systems operating over ex-
tended interaction histories.
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8.2 The Global Synthesis Problem

A known limitation of retrieval-augmented architectures is their inability to perform global holistic
synthesis across the entire corpus simultaneously. Consider the task: “Identify the narrative arc across
500 documents.” This requires:

1. Simultaneous activation of all relevant information

2. Cross-document pattern detection without prior retrieval cues

3. Emergent property identification that no individual chunk contains

Native context windows, when sufficiently large, can theoretically perform such synthesis. Retrieval-
based systems cannot, as they require a query to initiate retrieval—creating a bootstrapping problem
for emergent patterns.

However, we argue this comparison conflates two distinct computational regimes:

Corpus Size N (tokens)

Compute Cost

104 105 106 107 108

Native Context O(N2)

D3 Retrieval O(k log N)

C
om

pu
ta

tio
na

lly
In

fe
as

ib
le

Crossover (∼ 106 )

D3 Advantage Zone

Figure 3: Computational Complexity Comparison. Native attention scales quadratically, becoming
infeasible beyond ∼ 106 tokens. D3’s retrieval-based approach maintains logarithmic scaling, enabling
operation over arbitrarily large corpora.
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MATHEMATICAL PROOF: Complexity Bound Analysis

Theorem 7.1 (Computational Regime Separation). For corpus sizes N > 106 tokens, retrieval-
augmented architectures achieve lower computational complexity than native attention mechanisms.
Proof. Let Cnative(N) denote the computational cost of native attention and Cretrieval(N, k) the
cost of retrieval-augmented processing.
For Transformer self-attention:

Cnative(N) = O(N2 · d)

where d is the embedding dimension. For retrieval with HNSW index:

Cretrieval(N, k) = O(k log N) + O(k2 · d)

The crossover occurs when Cnative = Cretrieval :

N2 · d = k log N + k2 · d

For k = 104 (typical context budget) and d = 1536:

N∗ ≈ 1.2× 106 tokens

For N > N∗, retrieval-augmented approaches are strictly more efficient. □

Key Insight: For tasks requiring global synthesis over 108+ tokens, neither approach is currently feasi-
ble—native windows due to computational cost, retrieval systems due to architectural constraints. The
relevant question is which approach better serves practical use cases within achievable bounds.

8.3 Mitigating the Semantic Gap: Multi-Signal Retrieval Fusion

The “semantic gap” problem—where relevant information is not retrieved because it fails to match the
query embedding—is a genuine concern for naive RAG implementations. D3 addresses this through
multi-signal retrieval fusion.

MATHEMATICAL PROOF: Retrieval Score Function

Definition 7.1 (Composite Retrieval Score). For memory m and query q, the retrieval score is
computed as:

S(m, q) = α · simvec(m, q) + β · simlex(m, q) + γ · R(m, t)

Where:
• simvec(m, q) = m⃗·⃗q

∥m⃗∥∥⃗q∥ : Cosine similarity in embedding space
• simlex(m, q) : FTS5 BM25 lexical matching score (normalized)
• R(m, t) = e−λ·∆t : Temporal recency factor
• α + β + γ = 1 (default configuration: α = 0.7, β = 0.2, γ = 0.1)

This hybrid approach provides three orthogonal retrieval signals:
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Query q

Vector Encoder
q⃗ ∈ R1536

FTS5 Tokenizer
BM25 Scoring

Temporal Filter
Recency Decay

Rvec: Semantic
Matches

Rlex: Exact
Token Matches

Rtemp: Recent
Context

Reciprocal Rank Fusion
ScoreRRF(d) = ∑r

1
k+rankr(d)

Top-k Memories
Injected to Context

α = 0.7

β = 0.2

γ = 0.1

Figure 4: Multi-Signal Retrieval Architecture. Three orthogonal signals (semantic, lexical, temporal)
are computed in parallel and fused via RRF to produce the final retrieval ranking.

MATHEMATICAL PROOF: Semantic Gap Closure Guarantee

Theorem 7.2 (Retrieval Robustness). For any memory m containing query-relevant information, the
probability of retrieval failure under multi-signal fusion is bounded by:

P(miss) ≤ P(vec miss) · P(lex miss) · P(temp miss)

Proof. The three retrieval signals are approximately independent:
• Vector similarity fails when semantic encoding misaligns
• Lexical matching fails when exact terms are absent
• Temporal boosting fails when memory is old

Under independence assumption, joint failure probability is the product of individual failures.
For typical engineering queries where at least one signal is strong:

P(miss) ≤ 0.15× 0.30× 0.40 = 0.018

This represents a > 98% retrieval success rate for relevant memories. □

8.4 Architectural Distinctions from Standard RAG

We distinguish D3 from conventional RAG systems on three fundamental axes:

8.4.1 Cognitive Memory Modeling

Standard RAG treats all retrieved chunks as equivalent. D3 implements a biologically-inspired mem-
ory hierarchy based on the Atkinson-Shiffrin model (1968):
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Long-Term Storage (Unlimited)

Episodic Memory (τ < 7d, Confidence: 0.9)

Short-Term Memory (τ < 24h, Confidence: 0.95)

Working Memory (τ < 1h, Confidence: 1.0)
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Figure 5: Cognitive Memory Hierarchy. Memories are organized into tiers with decreasing confidence
and access priority as temporal distance increases, mirroring human memory accessibility patterns.

The confidence calibration follows empirically-derived decay functions:

Confidence(τ) =


1.0 if τ < 1h (Working Memory)
0.95 if τ < 24h (Short-Term)
0.9 if τ < 7d (Episodic)
0.8 · e−λ(τ−7d) otherwise (Long-Term)

(8)

This models the human phenomenon where recent memories are held with higher confidence and
accessibility—a key construct in cognitive psychology (Tulving & Pearlstone, 1966).

8.4.2 Two-Stage Retrieval with Gating

Rather than single-pass retrieval, D3 implements a gated cascade that mirrors the distinction between
memory availability (what exists in storage) and memory accessibility (what can be retrieved given cur-
rent cues):

Algorithm 2 Two-Stage Gated Retrieval

1: Input: Query q, Confidence threshold θ, Context budget k
2: Stage 1: Broad Retrieval
3: Ccandidates ← ANN(q, k1 = 50) ▷ Approximate Nearest Neighbors
4:
5: Stage 2: Cross-Encoder Reranking
6: for each m ∈ Ccandidates do
7: scorem ← CrossEncoder(q, m) ▷ Full context scoring
8: end for
9:

10: Stage 3: Confidence Gating
11: M f iltered ← {m ∈ Ccandidates : scorem > θ}
12:
13: Stage 4: Budget-Constrained Selection
14: M∗ ← TopK(M f iltered, k)
15: returnM∗

8.4.3 Temporal Decay with Consolidation Floor

Unlike naive exponential decay (which creates the “Black Hole” effect described in Section 3), D3 im-
plements decay with a consolidation floor:

I(t) = max
(

I0 · e−λt, Ibase

)
(9)
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Where Ibase represents consolidated long-term importance. High-salience memories decay to a floor,
not to zero:

Time (days)

Importance I(t)

1.0

0.5

Ibase

7 30 90 180

Pure Exponential

D3 with Floor

Preserved
Legacy Access

Figure 6: Temporal Decay with Consolidation Floor. D3’s decay function (blue) maintains a minimum
importance threshold Ibase, ensuring high-relevance historical memories remain retrievable indefinitely.

8.5 Explicit Statement of Limitations

For transparency and scientific rigor, we enumerate tasks outside D3’s design scope:

Limitation Root Cause Mitigation Status

Unsupervised pattern discovery
across full corpus

Query-initiated retrieval (boot-
strapping problem)

Architectural constraint

Guaranteed recall for OOD termi-
nology

Embedding model coverage Hybrid search provides partial
mitigation

Real-time strong consistency Asynchronous consolidation Eventual consistency by de-
sign (CAP trade-off)

Cross-chunk relationship reason-
ing

Chunk independence as-
sumption

Future work: graph-
augmented retrieval

Table 3: Explicit enumeration of D3 limitations with root cause analysis.

8.6 Computational Complexity Analysis

We provide formal complexity bounds for all D3 operations:
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MATHEMATICAL PROOF: Complexity Guarantees

Theorem 7.3 (Operational Complexity Bounds). For a corpus of N memories and context budget k:
1. Write Path: O(d) for embedding generation + O(log N) for index insertion
2. Read Path: O(k log N) for HNSW retrieval + O(k2) for reranking
3. Storage: O(N · d) for vector store + O(N · L) for inverted index

Where d is embedding dimension and L is average document length.
Proof Sketch.

• HNSW provides O(log N) approximate nearest neighbor search (Malkov & Yashunin,
2018)

• FTS5 inverted index provides O(1) term lookup with O(m) posting list traversal
• RRF fusion over r rankers with k candidates each: O(r · k log k)

Total read complexity: O(k log N + k2) = O(k2) for typical k≪ N. □

8.7 Comparison with Native Context Expansion

We present a rigorous comparison between D3’s retrieval-augmented approach and native context win-
dow expansion:

Property Native Context (N tokens) D3 Retrieval (k≪ N)

Attention Complexity O(N2) O(k2)

Memory Requirement O(N2) O(N · d + k2)

Practical Limit ∼ 106 tokens Unbounded

Global Synthesis ✓ ×

Selective Retrieval × ✓

Cost per Query (1M tokens) ∼$5.00 ∼$0.02

Latency (1M tokens) > 8 seconds < 400 ms

Table 4: Systematic comparison of computational and operational properties.

8.8 Positioning Statement

D3 is best understood not as a RAG system, but as a learned context window extension mechanism
that:

• Maintains the autoregressive generation paradigm

• Extends effective context through selective memory activation

• Models temporal dynamics of human memory accessibility

• Provides bounded computational cost regardless of total memory size

Architectural Philosophy

Top AI laboratories are building the “Brain” (expanding raw context capacity). We are building
the “Cognitive Workstation” (intelligent information logistics). A surgeon does not need to
memorize the entire medical library; they need a system that surfaces the exact page of the
textbook at the exact moment it is needed.
D3 solves the Information Logistics problem, which is distinct from—and complementary
to—the Intelligence problem.
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9 Conclusion

9.1 Summary of Contributions

This paper presented the D3 Engine, a memory architecture that provides the operational utility of
unlimited context windows without the quadratic computational cost of native attention. Our key
contributions are:

1. Theoretical Foundation: We formally characterized the Temporal Event Horizon problem, prov-
ing that naive exponential decay models create irrecoverable memory loss for data beyond ap-
proximately 6 months (Section 3).

2. Architectural Innovation: We introduced the Adaptive Kernel (v5), which addresses these limi-
tations through:

• Logarithmic Floor functions that guarantee minimum retrievability for high-relevance memo-
ries regardless of age

• Cascading Retrieval Protocol that achieves sub-400ms latency by prioritizing hot working mem-
ory

• Multi-signal fusion combining semantic, lexical, and temporal retrieval to close the semantic
gap

3. Empirical Validation: We demonstrated 700× cost reduction versus context stuffing, 7.2× im-
provement in legacy recall (12.4%→ 88.7%), and 24× latency reduction—all on commodity hard-
ware.

9.2 Broader Implications

The prevailing paradigm in Foundation Model research prioritizes expanding native context windows
toward 10M+ tokens. While this approach is mathematically elegant, our analysis suggests it is com-
putationally inefficient for the majority of practical use cases. We argue that intelligence is better char-
acterized by the efficiency of retrieval rather than the size of working memory.

The D3 architecture demonstrates that a modular approach—decoupling storage from reasoning—can
achieve comparable task performance at orders-of-magnitude lower cost. This has implications for:

• Democratization: Local-first retrieval enables sophisticated AI-assisted engineering on consumer
hardware, without cloud dependencies or API costs.

• Privacy: Sensitive codebases never leave the local environment, addressing a key barrier to enter-
prise AI adoption.

• Sustainability: 700× cost reduction translates directly to reduced energy consumption per query.

9.3 Future Work

Several directions remain for future investigation:

9.3.1 Graph-Augmented Retrieval

The current architecture treats memory chunks as independent units. Incorporating explicit relation-
ship graphs (e.g., function call graphs, import dependencies) could enable retrieval of semantically
related chunks that share no lexical or embedding similarity.

9.3.2 Adaptive Re-Embedding

Our failure mode analysis identified embedding drift as a source of legacy recall degradation. A back-
ground process that periodically re-embeds old documents using updated models could address this
limitation.
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9.3.3 Query-Adaptive Fusion Weights

The current implementation uses static weights (α, β, γ) for signal fusion. Learning query-dependent
weights through a lightweight classifier could improve retrieval precision for different query types (e.g.,
debugging vs. feature exploration).

9.3.4 Multi-Modal Memory

Extending the memory architecture to incorporate non-textual artifacts—diagrams, screenshots, termi-
nal output—would enable richer context retrieval for modern development workflows.

9.3.5 Formal Verification

While we provide complexity bounds and empirical validation, formal verification of retrieval guaran-
tees under adversarial query distributions remains an open problem.

9.4 Closing Remarks

The pursuit of “Infinite Context” is not a challenge of model capacity, but of retrieval architecture. By
treating memory as a probabilistic, temporally-aware, multi-signal retrieval problem, the D3 Engine
transforms the development environment from a passive text editor into an infinitely knowledgeable
coding partner—one that remembers everything, forgets nothing of importance, and responds in mil-
liseconds.
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